3.63 \(\int \frac{\sec ^4(c+d x)}{(a+a \sec (c+d x))^3} \, dx\)

Optimal. Leaf size=105 \[ \frac{\tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac{29 \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}-\frac{\tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}+\frac{7 \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2} \]

[Out]

ArcTanh[Sin[c + d*x]]/(a^3*d) - (Sec[c + d*x]^2*Tan[c + d*x])/(5*d*(a + a*Sec[c + d*x])^3) + (7*Tan[c + d*x])/
(15*a*d*(a + a*Sec[c + d*x])^2) - (29*Tan[c + d*x])/(15*d*(a^3 + a^3*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.221938, antiderivative size = 105, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {3816, 4008, 3998, 3770, 3794} \[ \frac{\tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac{29 \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}-\frac{\tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}+\frac{7 \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4/(a + a*Sec[c + d*x])^3,x]

[Out]

ArcTanh[Sin[c + d*x]]/(a^3*d) - (Sec[c + d*x]^2*Tan[c + d*x])/(5*d*(a + a*Sec[c + d*x])^3) + (7*Tan[c + d*x])/
(15*a*d*(a + a*Sec[c + d*x])^2) - (29*Tan[c + d*x])/(15*d*(a^3 + a^3*Sec[c + d*x]))

Rule 3816

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(d^2*
Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 2))/(f*(2*m + 1)), x] + Dist[d^2/(a*b*(2*m + 1)), In
t[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m]
)

Rule 4008

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(b*f*(2*m + 1)), x] + Dist[1/(b^2*(2*
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 3998

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x
_Symbol] :> Dist[B/b, Int[Csc[e + f*x], x], x] + Dist[(A*b - a*B)/b, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^4(c+d x)}{(a+a \sec (c+d x))^3} \, dx &=-\frac{\sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac{\int \frac{\sec ^2(c+d x) (2 a-5 a \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx}{5 a^2}\\ &=-\frac{\sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac{7 \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac{\int \frac{\sec (c+d x) \left (-14 a^2+15 a^2 \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{15 a^4}\\ &=-\frac{\sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac{7 \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac{\int \sec (c+d x) \, dx}{a^3}-\frac{29 \int \frac{\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{15 a^2}\\ &=\frac{\tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac{\sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac{7 \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}-\frac{29 \tan (c+d x)}{15 d \left (a^3+a^3 \sec (c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.485943, size = 209, normalized size = 1.99 \[ -\frac{2 \cos \left (\frac{1}{2} (c+d x)\right ) \sec ^3(c+d x) \left (14 \tan \left (\frac{c}{2}\right ) \cos ^3\left (\frac{1}{2} (c+d x)\right )+3 \tan \left (\frac{c}{2}\right ) \cos \left (\frac{1}{2} (c+d x)\right )+3 \sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right )+60 \cos ^5\left (\frac{1}{2} (c+d x)\right ) \left (\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )+88 \sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right ) \cos ^4\left (\frac{1}{2} (c+d x)\right )+14 \sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right ) \cos ^2\left (\frac{1}{2} (c+d x)\right )\right )}{15 a^3 d (\sec (c+d x)+1)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^4/(a + a*Sec[c + d*x])^3,x]

[Out]

(-2*Cos[(c + d*x)/2]*Sec[c + d*x]^3*(60*Cos[(c + d*x)/2]^5*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos
[(c + d*x)/2] + Sin[(c + d*x)/2]]) + 3*Sec[c/2]*Sin[(d*x)/2] + 14*Cos[(c + d*x)/2]^2*Sec[c/2]*Sin[(d*x)/2] + 8
8*Cos[(c + d*x)/2]^4*Sec[c/2]*Sin[(d*x)/2] + 3*Cos[(c + d*x)/2]*Tan[c/2] + 14*Cos[(c + d*x)/2]^3*Tan[c/2]))/(1
5*a^3*d*(1 + Sec[c + d*x])^3)

________________________________________________________________________________________

Maple [A]  time = 0.036, size = 96, normalized size = 0.9 \begin{align*} -{\frac{1}{20\,d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5}}-{\frac{1}{3\,d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}-{\frac{7}{4\,d{a}^{3}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{1}{d{a}^{3}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }+{\frac{1}{d{a}^{3}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4/(a+a*sec(d*x+c))^3,x)

[Out]

-1/20/d/a^3*tan(1/2*d*x+1/2*c)^5-1/3/d/a^3*tan(1/2*d*x+1/2*c)^3-7/4/d/a^3*tan(1/2*d*x+1/2*c)-1/d/a^3*ln(tan(1/
2*d*x+1/2*c)-1)+1/d/a^3*ln(tan(1/2*d*x+1/2*c)+1)

________________________________________________________________________________________

Maxima [A]  time = 1.11534, size = 161, normalized size = 1.53 \begin{align*} -\frac{\frac{\frac{105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{20 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a^{3}} - \frac{60 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{3}} + \frac{60 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{3}}}{60 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/60*((105*sin(d*x + c)/(cos(d*x + c) + 1) + 20*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(cos(d
*x + c) + 1)^5)/a^3 - 60*log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a^3 + 60*log(sin(d*x + c)/(cos(d*x + c) + 1)
 - 1)/a^3)/d

________________________________________________________________________________________

Fricas [A]  time = 1.71835, size = 424, normalized size = 4.04 \begin{align*} \frac{15 \,{\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \,{\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left (22 \, \cos \left (d x + c\right )^{2} + 51 \, \cos \left (d x + c\right ) + 32\right )} \sin \left (d x + c\right )}{30 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

1/30*(15*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*log(sin(d*x + c) + 1) - 15*(cos(d*x + c)^3 +
 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*log(-sin(d*x + c) + 1) - 2*(22*cos(d*x + c)^2 + 51*cos(d*x + c) + 32)*
sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{\sec ^{4}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec{\left (c + d x \right )} + 1}\, dx}{a^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4/(a+a*sec(d*x+c))**3,x)

[Out]

Integral(sec(c + d*x)**4/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x)/a**3

________________________________________________________________________________________

Giac [A]  time = 1.34659, size = 127, normalized size = 1.21 \begin{align*} \frac{\frac{60 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac{60 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}} - \frac{3 \, a^{12} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 20 \, a^{12} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 105 \, a^{12} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{15}}}{60 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

1/60*(60*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 - 60*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^3 - (3*a^12*tan(1/2*
d*x + 1/2*c)^5 + 20*a^12*tan(1/2*d*x + 1/2*c)^3 + 105*a^12*tan(1/2*d*x + 1/2*c))/a^15)/d